BIO
Jérôme Paméla was born in France, in 1955. He graduated from Ecole Polytechnique in 1977, and in 1978 he obtained a diploma in nuclear and particle physics at Orsay University. In 1984, Jérôme Paméla finished his PhD on CELLO, a high energy physics experiment run on the Petra e+/e- Collider located at the DESY Laboratory in Hamburg, Germany. Between 1983 and 1984, Dr. Paméla was also involved in the DELPHI Project at the LEP/CERN, Geneva. After his PhD, he changed his field of research from high energy physics to thermonuclear fusion.
In 1984 Dr. Paméla joined the French Atomic Energy Agency (CEA) Controlled Thermonuclear Fusion Department in Fontenay-aux-Roses near Paris, and then moved to Cadarache in southern France in 1986. Jérôme Paméla was involved in the development of negative ion-based neutral beam heating, first as a physicist, and then as Group and European Task Area Leader. During several years he was responsible for collaboration with Japan in that field. In 1995-1996, he was involved in and ultimately led a first phase of studies preparing Cadarache to bid for siting ITER.
In 1996, Jérôme Paméla was appointed Head of the Controlled Thermonuclear Fusion Department of the CEA and Head of the Euratom-CEA Association. In September 1999 he took up the position of the EFDA Associate Leader for JET, which he held until spring 2006, when he became EFDA Leader at EFDA CSU Garching.
In 2010 he was appointed Director of ITER-France.
Augmentation de la consommation d'énergie dans le monde, raréfaction des énergies fossiles, changement climatique, nécessaire réduction des émissions de gaz à effet de serre… Le développement de nouvelles filières énergétiques, renouvelables et peu ou pas émettrices de gaz à effet de serre, s'impose. Face à cette inévitable transition énergétique, la fusion nucléaire pourrait trouver sa place, à condition de faire la preuve de sa faisabilité et de pouvoir passer au stade de la production industrielle. C'est l'enjeu de l'installation de recherche internationale ITER, en cours de construction à Cadarache, dans le sud de la France.
Rising energy consumption round the world, rarefaction of fossil energy sources, climate change, the necessary reduction of greenhouse gas (GHG) emissions… The development of new and renewable energy sectors, emitting few or zero GHGs has become primordial. Faced with this inevitable energy transition phase, nuclear fusion could be justified, provided we can prove its feasibility, thereby enabling a move to industrial fusion power production. This is the challenge assigned to the ITER international research facility.